

Comparing Series and Parallel RLC CircuitsParallel RLCSeries RLC
$$C \frac{d^2 v(t)}{dt^2} + \frac{1}{R} \frac{dv(t)}{dt} + \frac{1}{L} v(t) = 0$$
 $L \frac{d^2 i(t)}{dt^2} + R \frac{di(t)}{dt} + \frac{1}{C} i(t) = 0$ $v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ $i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$ $s_{1,2} = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$ $s_{1,2} = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$ $\alpha = \frac{1}{2RC}$ $\omega_0 = \frac{1}{\sqrt{LC}}$ $\alpha = \frac{R}{2L}$ $\omega_0 = \frac{1}{\sqrt{LC}}$

Characteristic equation	$s^2 + \frac{R}{L}s + \frac{1}{LC} = 0$
Neper, resonant, and damped frequencies	$\alpha = \frac{R}{2L} \omega_0 = \sqrt{\frac{1}{LC}} \omega_d = \sqrt{\omega_0^2 - \alpha^2}$
Roots of the characteristic equation	$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$
$\alpha^2 > \omega_0^2$: overdamped	$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}, t \ge 0$
	$i(0^+) = A_1 + A_2 = I_0$
	$\frac{di(0^+)}{dt} = s_1 A_1 + s_2 A_2 = \frac{1}{L} \left(-RI_0 - V_0 \right)$
$\alpha^2 < \omega_0^2$: underdamped	$i(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t, t \ge 0$
	$i(0^+) = B_1 = I_0$
	$\frac{di(0^+)}{dt} = -\alpha B_1 + \omega_d B_2 = \frac{1}{L} (-RI_0 - V_0)$
$\alpha^2 = \omega_0^2$: critically damped	$i(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}, t \ge 0$
	$i(0^+) = D_2 = I_0$
	$\frac{di(0^+)}{dt} = D_1 - \alpha D_2 = \frac{1}{L} \left(-RI_0 - V_0 \right)$

Characteristic equation	$s^{2} + \frac{1}{RC}s + \frac{1}{LC} = 0$
Neper, resonant, and damped frequencies	$\alpha = \frac{1}{2RC}$ $\omega_0 = \sqrt{\frac{1}{LC}}$ $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$
Roots of the characteristic equation	$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$
$\alpha^2 > \omega_0^2$: overdamped	$v(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}, t \ge 0$ $v(0^+) = A_1 + A_2 = V_0$
	$\frac{dv(0^+)}{dt} = s_1 A_1 + s_2 A_2 = \frac{1}{C} \left(\frac{-V_0}{R} - I_0 \right)$
$\alpha^2 < \omega_0^2$: underdamped	$v(t) = B_1 e^{-\alpha t} \cos \omega_d t + B_2 e^{-\alpha t} \sin \omega_d t, t \ge 0$
	$v(0^+) = B_1 = V_0$
	$\frac{dv(0^{+})}{dt} = -\alpha B_1 + \omega_d B_2 = \frac{1}{C} \left(\frac{-V_0}{R} - I_0 \right)$
$\alpha^2 = \omega_0^2$: critically damped	$v(t) = D_1 t e^{-\alpha t} + D_2 e^{-\alpha t}, t \ge 0$
	$v(0^+) = D_2 = V_0$
	$\frac{dv(0^+)}{dt} = D_1 - \alpha D_2 = \frac{1}{C} \left(\frac{-V_0}{R} - I_0 \right)$

